
Whither Wordpress?
JAMStack CMS are ready to shine!

By Brian Rinaldi
@remotesynth







I don't
hate

Wordpress



I was a believer in static site 
tools - or what we now call 
JAMStack - since the early 
days. I've been writing and 
speaking on this topic since at 
least 2014.

2015



I wrote a report for O'Reilly 
back in 2015. Back then the 
process was very labor 
intensive.

2015



Just in case this isn’t already clear, I want to emphasize 
that static site generators are built for developers. This 
starts with the development of the site all the way 

through to adding content. It’s unlikely that 
nondevelopers will feel comfortable writing in 

Markdown with YAML or JSON front matter, which is 
the metadata contained at the beginning of most static 
site engine content or files. Nor would non- technical 
users likely feel comfortable editing YAML or JSON 

data files.
1

Me (Static Site Generators report for O'Reilly 2015)



Flash forward a couple years 
later things had minimally 
improved



2017



The tooling was very primitive. 
It required a comfort with the 
command line and knowledge 
of things like Markdown, YAML 
and "front matter."

...From a development and content 
contribution standpoint, static site 

generators (i.e., the tools frequently used to 
build static sites— and what this book is 

about) can have a steep learning curve. Lastly, 
deployment can be complex, making static 

sites less than ideal for content that changes 
frequently.

1
Me (Working with Static Sites, 2017)



The developer experience 
started to improve - 
eliminating the need for 
manual builds and FTP 
deployment, for example.

The Developer Experience Improved



GitHub Pages added Jekyll 
support as far back as 2014 
meaning you could just check 
in your code in GitHub and the 
page would build 
automatically.



Netlify launched in 2015, 
these improved the dev 
experience but didn't impact 
the content writer/editor 
experience at all.



The actual process of creating 
and managing content, 
however, was still a very 
manual process of creating 
and editing text files in the file 
system.



Content creators were used to 
a WYSIWYG experience and 
more advanced content 
management tooling similar to 
Wordpress site admin



Some solutions tried to resolve 
this by creating a CMS-like 
experience but in a static 
context

Static Site CMS



Jekyll is one of the oldest and 
most widely used static site 
generators and it was the first 
that I was aware of to release 
an officially endorsed admin

Jekyll Admin



Jekyll admin works fine but it is 
intended to be run locally, so 
there are no user 
authentications and there are 
very limited configuration 
options

Jekyll Admin
Available at: https://github.com/jekyll/jekyll-admin

Installation:

1. Modify your site's Gemfile to add:

gem 'jekyll-admin', group: :jekyll_plugins

2. Run bundle install

3. Start Jekyll and go to http://localhost:4000/admin



Netlify CMS is an open source project from 
Netlify that is a highly configurable 
administration panel that can be added to 
pretty much any JAMStack site. Unlike 
Jekyll admin, it is designed to be run 
publicly - it defaults to Netlify's Indentity 
service but it can be configured to use 
external OAuth providers for authentication.

Netlify CMS



Installation of NetlifyCMS can 
be extremely simple assuming 
this is a new project. 
Configuration for existing or 
highly customized projects 
can get fairly complex.

Netlify CMS
Available at: https://www.netlifycms.org

Installation:

1. Option A: One Click Install

2. Option B: Custom Install



Just click the button and you are 
redy to go. However, you are limited 
to just Hugo, Gatsby or Middleman 
and deployed to Netlify. Stackbit 
also supports a very similar 
installation of NetlifyCMS that 
works with Hugo, Gatsby and Jekyll.

Netlify CMS - Installation



Netlify CMS - Installation
1. Add an admin folder with an index.html that includes 
the Netlify CMS scripts.

2. Add a config.yaml to the admin folder with 
configuration options and a data specification



Netlify CMS - Resources
1. Overview and one-click install walkthrough: A Fresh 
Look at Netlify CMS Pt. 1

2. Custom install walkthrough: A Fresh Look at Netlify 
CMS Pt. 2

https://dev.to/remotesynth/a-fresh-look-at-netlify-cms-part-1-136k
https://dev.to/remotesynth/a-fresh-look-at-netlify-cms-part-1-136k
https://dev.to/remotesynth/a-fresh-look-at-netlify-cms-part-2-5694
https://dev.to/remotesynth/a-fresh-look-at-netlify-cms-part-2-5694


Around the same time that 
JAMStack was taking off the 
idea of headless CMS began 
to rise. Contentful, Forestry, 
Sanity, Dato are a few well 
known examples.

The Headless CMS



For those of you unfamiliar with the term, a 
headless CMS is essentially the back end of a 
CMS decoupled from the presentation of the 
content on the front-end. A headless-CMS is 
essentially a content API for the front end but 
gives the back end content editors the tools 
they need to create a manage content. Let's 
look at two examples of different types of 
headless CMS.

What is a Headless CMS?



Chris Coyier released a post just 
yesterday that tries to organize 
different CMS into a chart 
based on some of the features 
to make it easier to understand 
how headless fits in.

1

1 Source: https://headlesscms.org/



There's also headlesscms.org, 
which is maintained by Netlify, 
that lists all of the headless 
CMS with filters for supported 
static site generator, license 
and more.

1

1 Source: https://headlesscms.org/



Contentful is probably one of the most 
well-known headless CMS solutions and 
perhaps also one of the most widely used. 
It is a more traditional headless-CMS in 
that all the content is stored in within 
Contentful and then accessed via an API. 
Let's look at the Contentful backend so 
you get a sense of what it feels like.

Examples - Contentful



Forestry is an example of a git-based 
headless CMS. This means that Forestry 
stores content in a Git repository you 
create, but Forestry provides the tools to 
manage that content with an editing UI 
that understanding things like 
Markdown, YAML and JSON.

Examples - Forestry



So now you have a CMS 
backend, but how do you 
integrate it with your front end 
site?

Connecting Your 
JAMStack site to a 

Headless CMS



Note that I tried to test the 
Jekyll gem. Installation and use 
is pretty simple, but it appears 
to not yet be compatible with 
Jekyll 4.0.0 which released 
relatively recently.

Prebuilt Integrations
Contenful maintains pre-built integrations for:
* Jekyll
* Gatsby
* Middleman
* Metalsmith



As Forestry is a git-based 
CMS that doesn't actually 
store the content itself, rather 
than provide plugins, they 
provide starter projects.

Prebuilt Integrations
Forestry includes prebuilt starters for:

4 Gatsby

4 Hugo

4 Gridsome

4 Eleventy

4 VuePress



Content can be brought in manually if you don't 
use one of the static site generators your CMS 
supports or you use a custom solution, provided 
it has an API. Some static site generators 
support bringing content from an API out of the 
box. You can also write something that locally 
calls the API and pulls content converting it to 
files or you can use something like a Netlify 
function that is triggered on deploy-building

Use the API



Stackbit



While I hope you agree that 
the editing experience has 
definitely improved, we're still 
not quite to the user 
experience many content 
editors have been used to.

We Can Still Do Better



While we're at a point where JAMStack + 
headless is a real alternative to a 
traditional CMS, but it could be better. 
The administration of the site is still fully 
decoupled from the front end making 
some edits tough. Let's take a quick look 
at some ideas for how this can be 
improved.

In the Year 2000



TinaCMS is an open source 
inline editing experience built 
by Forestry. As you can see, it 
allows 







stackbit.com/live



Thanks!
Twitter: @remotesynth
Email: brian@stackbit.com


